Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging.
نویسندگان
چکیده
Atomically thin MoS2 is of great interest for electronic and optoelectronic applications because of its unique two-dimensional (2D) quantum confinement; however, the scaling of optoelectronic properties of MoS2 and its junctions with metals as a function of layer number as well the spatial variation of these properties remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy (PCS-AFM) to image the current (in the dark) and photocurrent (under illumination) generated between a biased PtIr tip and MoS2 nanosheets with thickness ranging between n = 1 to 20 layers. Dark current measurements in both forward and reverse bias reveal characteristic diode behavior well-described by Fowler-Nordheim tunneling with a monolayer barrier energy of 0.61 eV and an effective barrier scaling linearly with layer number. Under illumination at 600 nm, the photocurrent response shows a marked decrease for layers up to n = 4 but increasing thereafter, which we describe using a model that accounts for the linear barrier increase at low n, but increased light absorption at larger n creating a minimum at n = 4. Comparative 2D Fourier analysis of physical height and photocurrent images shows high spatial frequency spatial variations in substrate/MoS2 contact that exceed the frequencies imposed by the underlying substrates. These results should aid in the design and understanding of optoelectronic devices based on quantum confined atomically thin MoS2.
منابع مشابه
C4nr03703k 13028..13035 ++
We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5–3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV dis...
متن کاملConfocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.
We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV dis...
متن کاملUnusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers
Two-dimensional layered transition-metal dichalcogenides have attracted considerable interest for their unique layer-number-dependent properties. In particular, vertical integration of these two-dimensional crystals to form van der Waals heterostructures can open up a new dimension for the design of functional electronic and optoelectronic devices. Here we report the layer-number-dependent phot...
متن کاملOptical and Transport Properties of Ni-MoS2
In this paper, MoS2 and Ni-MoS2 crystal layers were fabricated by the chemical vapor transport method with iodine as the transport agent. Two direct band edge transitions of excitons at 1.9 and 2.1 eV were observed successfully for both MoS2 and Ni-MoS2 samples using temperature-dependent optical reflectance (R) measurement. Hall effect measurements were carried out to analyze the transport beh...
متن کاملPlasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions.
We investigate the wavelength- and polarization-dependence of photocurrent signals generated at few-layer MoS2-metal junctions through spatially resolved photocurrent measurements. When incident photon energy is above the direct bandgap of few-layer MoS2, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, which can be attributed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2015